| Peer-Reviewed

Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura

Received: 9 June 2021     Accepted: 1 July 2021     Published: 10 July 2021
Views:       Downloads:
Abstract

Two varieties of tomato plants, H 1015 (1) and H 3402 (2) from two adjoining commercial farms located in San Benito, Extremadura and cultivated in the same soil and fertirrigation conditions, were inoculated with the arbuscular mycorrhizal fungus Glomus iranicum variety Tenuihypharum, (AMF) from the commercial product Mycogrowth. The applied treatments to the plants were: control 1, AMF 1, control 2 and AMF 2. The physiological indicators and productive responses of the plants from the four treatments were studied. The percentage of mycorrhization, soil moisture, the growth of dry aerial biomass, leaf water potential (Ψ leaf), stomatal conductance (gs), photosynthetic rate (Pn) and performance of its components rate were evaluated 81 days after transplantation. The (Ψ leaf) and (Pn) were measured twice (10.00 and 13.00 h). The results showed that symbiosis between tomato plants and the AMF was successful. Plants of both varieties treated with AMF, had better physiological performance, increased leaf water potential, increased gas exchange (stomatal conductance and photosynthetic rate), and showed improvements in growth, quality and productivity at plot level. The positive effects of this fungus show that it could result of great importance for reducing the use of chemical fertilizers, at least partially, in the future.

Published in American Journal of Applied Scientific Research (Volume 7, Issue 3)
DOI 10.11648/j.ajasr.20210703.12
Page(s) 38-45
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Horticultural, Mycogrowth, Water Relations, Gas Exchange, Performance

References
[1] Lahoz García. (2015). Influencia del genotipo, el ambiente de cultivo y el uso de riegos deficitarios en la calidad organoléptica del tomate de industria. Tesis doctoral. Universitat Jaume I.
[2] Gorini, F. (2018). Guía completa del cultivo del tomate. Parkstone International.
[3] Rozas, M. A., Ordiales, E., Llerena, J. L., Paniagua, L. L., & García-Martín, A. (2016, March). Characterization of water requirements in Extremadura (Spain) for processing tomato. In XIV International Symposium on Processing Tomato 1159, 51-56).
[4] Pogula, S. (2018). Bio-fertilizers and its importance in Agriculture. Indian Farmer, 5, (04): 417-423. ISSN: 2394-1227.
[5] Rodriguez, A., & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME journal, 9 (5): 1053.
[6] Courty, P. E., Buée, M., Diedhiou, A. G., Frey-Klett, P., Le Tacon, F., Rineau, F.,... & Garbaye, J. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry, 42 (5): 679-698.
[7] Zhang, L.; Xu, M.; Liu, Y.; Zhang, F.; Hodge, A.; Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist, 210, (3): 1022-1032. ISSN: 1469-8137.
[8] Augé, R. M.; Toler, H. D.; Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a metaanalysis. Mycorrhiza, 25, (1), 13-24. ISSN: 1432-1890.
[9] Sánchez-Romera, B.; Ruiz-Lozano, J. M.; Zamarreño, A. M.; García-Mina, J. M.; Aroca, R. (2016). Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza, 26, (2): 111-22. ISSN: 1432-1890.
[10] Qiang-Sheng; W., Srivastava, A. K.; Ming-Qin, C.; Wang, J. (2015). Mycorrhizal function on soil aggregate stability in root zone and root-free hyphae zone of trifoliate orange. Archives of Agronomy and Soil Science 61, (6): 813-825. ISSN: 0365-0340.
[11] Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11, 3–42.
[12] Ruiz-Lozano, J. M., & Aroca, R. (2010). Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular mycorrhizas: physiology and function (p. 239-256). Springer, Dordrecht.
[13] Verbruggen, E., van der Heijden, M. G., Rillig, M. C., & Kiers, E. T. (2013). Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytologist, 197 (4): 1104-1109.
[14] Hausmann, N. T., & Hawkes, C. V. (2010). Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology, 91 (8): 2333-2343.
[15] Kjøller, R., & Rosendahl, S. (2000). Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant and Soil, 226 (2): 189.
[16] Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T., & Wiemken, A. (2004). Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 138 (4): 574-583.
[17] Rodríguez, Y.; Arias, L.; Medina, A.; Mujica, Y.; Medina, L. R.; Fernández, K.; Mena, A. (2015). Alternativa de la técnica de tinción para determinar la colonización micorrízica. Cultivos Tropicales. 36 (2): 18-21. ISSN: 1819-4087.
[18] Dalpé, Y.; Séguin, S. M. (2013). Microwave-assisted technology for the clearing and staining of arbuscular mycorrhizal fungi in roots. Mycorrhiza, 23 (4): 333-340. ISSN: 1432-1890.
[19] Giovanetti, M.; Mosse, B. (1980). An Evaluation of Techniques for Measuring VesicularArbuscular Mycorrhizal Infection in Roots. New Phytologist. 84, 489-500. ISSN: 14698137.
[20] Scholander, P. F., Hammel, H. T., Bradstreet, E. D., Hemingsen, E. A. (1965). Sap pressure in vascular plants. Science 148, 339-346.
[21] Turner, N. C., 1988. Measurements of plant water status by the pressure chamber technique. Irrig. Sci. 9, 289-308.
[22] Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., & Godeas, A. (2005). Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. Journal of plant physiology, 162 (6): 625-633.
[23] Nicolás, E., Maestre-Valero, J. F., Alarcón, J. J., Pedrero, F., Vicente-Sánchez, J., Bernabé, A. & Fernández, F. (2015). Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. The Journal of Agricultural Science, 153 (6), 1084-1096.
[24] Fernández, F., Dell´ Amico, J. M., Rodríguez, P. (2006). Efectividad de algunos tipos de inoculantes micorrízicos a base de Glomus hoi “like” en el cultivo del tomate (Lycopersicon esculentum Mill. Var. Amalia). Cultivos Tropicales 27 (3): 25-30.
[25] Dell´ Amico, J. M., Fernández, F., Nicolás, E., López, L. F., Sánchez, M. J. (2007). Respuesta fisiológica del tomate a la aplicación de dos inoculantes a base de Glomus sp1 (INCAM 4) por dos vías de inoculación diferentes. Cultivos Tropicales 28 (2): 51-58.
[26] Ley, J. F.; Sánchez, J. A.; Ricardo, N. E. y Collazo, E. (2015). Efecto de cuatro especies de hongos micorrizógenos arbusculares en la producción de frutos de tomate. Agronomía Costarricense 39 (1): 47-59. ISSN: 0377-9424 / 2015.
[27] Gómez-Bellot, M. J., Ortuño, M. F., Nortes, P. A., Vicente-Sánchez, J., Bañón, S., & Sánchez-Blanco, M. J. (2015). Mycorrhizal euonymus plants and reclaimed water: Biomass, water status and nutritional responses. Scientia Horticulturae, 186, 61-69.
[28] Ortuno, M. F., García-Orellana, Y., Conejero, W., Ruiz-Sánchez, M. C., Alarcón, J. J., & Torrecillas, A. (2006). Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 20 (1): 1-8.
[29] Lazcano, C., Barrios-Masias, F. H., & Jackson, L. E. (2014). Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry, 74, 184-192.
[30] Bárzana G, Aroca R, Bienert P, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27, 349–363.
[31] Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18 (6-7): 287-296.
[32] El-Nashar, Y. I. (2017). Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica, 55 (2): 201-209.
[33] Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84 (4): 373-381.
[34] Asrar, A. A., Abdel-Fattah, G. M., & Elhindi, K. M. (2012). Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50 (2): 305-316.
[35] Ruiz-Lozano, J. M., Porcel, R., & Aroca, R. (2006). Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes?. New Phytologist, 171 (4): 693-698.
[36] Mummey, D. L., & Rillig, M. C. (2006). The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil, 288 (1-2): 81-90.
[37] Pask A, Pietragalla J, Mullan D, Reynolds MP, editors. Physiological breeding II: a field guide to wheat phenotyping [Internet]. Mexico DF: CIMMYT; (2012) [cited 2018 Aug 27]. iv, 132 pages. Available from: https://repository. cimmyt.org/handle/10883/1288.
[38] Manzoni S, Vico G, Palmroth S, Porporato A, Katul G.. (2013). Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Advances in Water Resources. 62, 90–105. doi: 10.1016/j. dvwatres.2013.09.020.
[39] Dell´Amico JM, Morales DM. (2017) Comportamiento de la conductancia estomática de dos variedades de tomate cubanas en condiciones de campo y riego limitado. Cultivos Tropicales. 38 (2): 137–144.
[40] Dell'Amico, J. M.; Guillama, R. y González, M. C. (2018). Respuesta de cinco líneas de tomate (Solanum lycopersicum L.) Cultivadas en dos variantes de riego, en condiciones de campo. Cultivos Tropicales. 39 (4): 55-62.
[41] Aroca, R., Porcel, R., & Ruiz-Lozano, J. M. (2007). How does arbuscular symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytologist, 173 (4): 808-816.
[42] Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., & Giller, K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 41 (6): 1233-1244.
[43] Giovannetti, M.; Avio, L.; Sbrana, C. (2015). Functional significance of anastomosis in arbuscular mycorrhizal networks. En: Horton, T. R. (Editor), Mycorrhizal Networks. Springer Netherlands, p. 41-67. ISBN: 978-94-017-7395-9.
[44] Subramanian, K. S., Santhanakrishnan, P., & Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia horticulturae, 107 (3): 245-253.
[45] Bona, E., Cantamessa, S., Massa, N., Manassero, P., Marsano, F., Copetta, A.,... & Berta, G. (2017). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza, 27 (1): 1-11.
[46] Chandel, S. S., Singh, B. K., Singh, A. K., Moharana, D. P., Kumari, A., & Kumar, A. (2017). Response of various mycorrhizal strains on tomato (Solanum lycopersicum L.) cv. Arka Vikas in relation to growth, yield, and quality attributes. Journal of Pharmacognosy and Phytochemistry, 6 (6): 2381-2384.
[47] Tanwar, A., Aggarwal, A., Kadian, N., & Gupta, A. (2013). Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. Journal of soil science and plant nutrition, 13 (1): 55-66.
[48] Nzanza, B., Marais, D., & Soundy, P. (2012). Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62 (3): 209-215.
Cite This Article
  • APA Style

    José Miguel Dell’Amico, María José Gómez-Bellot, Pedro Nortes Tortosa, Laura Pozuelo García, Francisco Javier Pagán Moreno, et al. (2021). Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura. American Journal of Applied Scientific Research, 7(3), 38-45. https://doi.org/10.11648/j.ajasr.20210703.12

    Copy | Download

    ACS Style

    José Miguel Dell’Amico; María José Gómez-Bellot; Pedro Nortes Tortosa; Laura Pozuelo García; Francisco Javier Pagán Moreno, et al. Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura. Am. J. Appl. Sci. Res. 2021, 7(3), 38-45. doi: 10.11648/j.ajasr.20210703.12

    Copy | Download

    AMA Style

    José Miguel Dell’Amico, María José Gómez-Bellot, Pedro Nortes Tortosa, Laura Pozuelo García, Francisco Javier Pagán Moreno, et al. Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura. Am J Appl Sci Res. 2021;7(3):38-45. doi: 10.11648/j.ajasr.20210703.12

    Copy | Download

  • @article{10.11648/j.ajasr.20210703.12,
      author = {José Miguel Dell’Amico and María José Gómez-Bellot and Pedro Nortes Tortosa and Laura Pozuelo García and Francisco Javier Pagán Moreno and Félix Fernández Martín},
      title = {Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura},
      journal = {American Journal of Applied Scientific Research},
      volume = {7},
      number = {3},
      pages = {38-45},
      doi = {10.11648/j.ajasr.20210703.12},
      url = {https://doi.org/10.11648/j.ajasr.20210703.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajasr.20210703.12},
      abstract = {Two varieties of tomato plants, H 1015 (1) and H 3402 (2) from two adjoining commercial farms located in San Benito, Extremadura and cultivated in the same soil and fertirrigation conditions, were inoculated with the arbuscular mycorrhizal fungus Glomus iranicum variety Tenuihypharum, (AMF) from the commercial product Mycogrowth. The applied treatments to the plants were: control 1, AMF 1, control 2 and AMF 2. The physiological indicators and productive responses of the plants from the four treatments were studied. The percentage of mycorrhization, soil moisture, the growth of dry aerial biomass, leaf water potential (Ψ leaf), stomatal conductance (gs), photosynthetic rate (Pn) and performance of its components rate were evaluated 81 days after transplantation. The (Ψ leaf) and (Pn) were measured twice (10.00 and 13.00 h). The results showed that symbiosis between tomato plants and the AMF was successful. Plants of both varieties treated with AMF, had better physiological performance, increased leaf water potential, increased gas exchange (stomatal conductance and photosynthetic rate), and showed improvements in growth, quality and productivity at plot level. The positive effects of this fungus show that it could result of great importance for reducing the use of chemical fertilizers, at least partially, in the future.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Physiological and Productive Response of Two Varieties of Tomato (Solanum lycopersicon) to the Application of Glomus iranicum in the Region of Extremadura
    AU  - José Miguel Dell’Amico
    AU  - María José Gómez-Bellot
    AU  - Pedro Nortes Tortosa
    AU  - Laura Pozuelo García
    AU  - Francisco Javier Pagán Moreno
    AU  - Félix Fernández Martín
    Y1  - 2021/07/10
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ajasr.20210703.12
    DO  - 10.11648/j.ajasr.20210703.12
    T2  - American Journal of Applied Scientific Research
    JF  - American Journal of Applied Scientific Research
    JO  - American Journal of Applied Scientific Research
    SP  - 38
    EP  - 45
    PB  - Science Publishing Group
    SN  - 2471-9730
    UR  - https://doi.org/10.11648/j.ajasr.20210703.12
    AB  - Two varieties of tomato plants, H 1015 (1) and H 3402 (2) from two adjoining commercial farms located in San Benito, Extremadura and cultivated in the same soil and fertirrigation conditions, were inoculated with the arbuscular mycorrhizal fungus Glomus iranicum variety Tenuihypharum, (AMF) from the commercial product Mycogrowth. The applied treatments to the plants were: control 1, AMF 1, control 2 and AMF 2. The physiological indicators and productive responses of the plants from the four treatments were studied. The percentage of mycorrhization, soil moisture, the growth of dry aerial biomass, leaf water potential (Ψ leaf), stomatal conductance (gs), photosynthetic rate (Pn) and performance of its components rate were evaluated 81 days after transplantation. The (Ψ leaf) and (Pn) were measured twice (10.00 and 13.00 h). The results showed that symbiosis between tomato plants and the AMF was successful. Plants of both varieties treated with AMF, had better physiological performance, increased leaf water potential, increased gas exchange (stomatal conductance and photosynthetic rate), and showed improvements in growth, quality and productivity at plot level. The positive effects of this fungus show that it could result of great importance for reducing the use of chemical fertilizers, at least partially, in the future.
    VL  - 7
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Plant Physiology and Biochemistry, National Institute of Agricultural Sciences (INCA), Ministry of Higher Education (MES), San José de las Lajas, Cuba

  • Department of Irrigation, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Espinardo-Murcia, Spain

  • Department of Irrigation, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Espinardo-Murcia, Spain

  • Department of Salts, Symborg, Murcia, Spain

  • Symborg, Murcia, Spain

  • Symborg, Murcia, Spain

  • Sections