Background: The pathogenesis of ankylosing spondylitis (AS) is unclear and the incidence has been increasing in recent years. Objective: To explore the trend and clinical significance of peripheral blood mononuclear cell subtypes in patients with AS. Method: Detect plasma levels of seven cytokines (TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A, and IFN-γ), analyze the correlation between the percentage of CD16+monocyte subtypes and cytokine expression at the same level. Result: Compared with the control group, the plasma levels of five cytokines in the AS group were significantly higher than those in the control group (P<0.05), and were positively correlated with the content of CD16+monocytes. Conclusion: CD16+monocytes are closely related to the occurrence of AS; Detecting CD16+monocyte subtypes in patients' peripheral blood can provide new experimental indicators for the diagnosis of AS. Taking AS as a starting point, it provides a new research direction for the treatment and prognosis detection of other autoimmune diseases in the future.
Published in | American Journal of Applied Scientific Research (Volume 9, Issue 3) |
DOI | 10.11648/j.ajasr.20230903.11 |
Page(s) | 82-89 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Ankylosing Spondylitis, Monocyte Subtype, Cytokines, Flow Cytometry
[1] | Mohammadi H, Hemmatzadeh M, Babaie F, et al, Micro rNA implications in the etiopathogenesis of ankylosing spondylitis [J]. J Cell Physiol, 2018, 233 (8): 5564-5573. |
[2] | B atko B, Schramm-Luc A, Skiba D S, et al. TNF-αinhibitors decrease classical CD14hi CD16- monocyte subsets in highly active, conventional treatment refractory rheumatoid arthritis and ankylosing spondylitis [J]. Int J Mol Sci, 2019, 20 (2): E291. |
[3] | Szekanecz, Z.; Koch, A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. rheumatol. 2007, 19, 289–295. |
[4] | Wright, C.; Edelmann, M.; DiGleria, K.; Kollnberger, S.; Kramer, H.; McGowan, S.; McHugh, K.; Taylor, S.; Kessler, B.; Bowness, P. Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway. Ann. rheum. Dis. 2009, 68, 1626–1632. |
[5] | robbins, C. S.; Swirski, F. K. The multiple roles of monocyte subsets in steady state and inflammation. Cell. Mol. Life Sci. 2010, 67, 2685–2693. |
[6] | Von Delwig A, Locke J, robinson JH, et al. response of Th17 cells to a citrullinated arthritogenic aggrecan peptide in patients with rheumatoid arthritis. Arthritis rheum 2010; 62: 143–9. |
[7] | van der Linden, S.; Valkenburg, H. A.; Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis rheum. 1984, 27, 361–368. |
[8] | Aletaha, D.; Neogi, T.; Silman, A. J.; Funovits, J.; Felson, D. T.; Bingham, C. O.; Birnbaum, N. S.; Burmester, G. r.; Bykerk, V. P.; Cohen, M. D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of rheumatology/European League Against rheumatism collaborative initiative. Arthritis rheum. 2010, 62, 2569–2581. |
[9] | Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D. N.; Leenen, P. J. M.; Liu, Y.-J.; MacPherson, G.; randolph, G. J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. |
[10] | Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood, 2011, 118 (5): e16-31. |
[11] | M. Korkosz, K. Bukowska-Strakova, S. Sadis, T. Grodzicki, M. Siedlar, Monoclonal antibodies against M-CSF diminish the number of circulating intermediate and nonclassical CD14++CD16+-CD14+CD16++ monocytes in rheumatoid arthritis patient, Blood 119 (2012) 5329–5330. |
[12] | A. J. Weldon, I. Moldovan, M. G. Cabling, E. A. Hernandez, S. Hsu, J. Gonzalez, A. Parra, A. Benitez, N. Daoud, K. Colburn, K. J. Payne, Surface APrIL is elevated on myeloid cells and is associated with disease activity in patients with rheumatoid arthritis, J. rheumatol. 42 (2015) 749–759. |
[13] | Kawanaka, N.; Yamamura, M.; Aita, T.; Morita, Y.; Okamoto, A.; Kawashima, M.; Iwahashi, M.; Ueno, A.; Ohmoto, Y.; Makino, H. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis rheum. 2002, 46, 2578–2586. |
[14] | Melgert BN, Spaans F, Borghuis T, et al. Pregnancy and preeclampsia affect monocyte subsets in human and rats [J]. PLoS One, 2012, 7 (9): e45229-45239. |
[15] | Pul r, Morbiducci F, Skuljec J, et al. Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients [J]. PLoS One, 2012, 7 (12): e51867. |
[16] | rossol M, Kraus S, Pierer M, et al. The CD14 (bright) CD16 + monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population [J]. Anhritis rheum, 2012, 64 (3): 671-677. |
[17] | G. Thomas, r. Tacke, C. C. Hedrick, r. N. Hanna, Nonclassical patrolling monocyte function in the vasculature, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 1306–1316. |
[18] | J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Y. Zhang, B. Senechal, A. Puel, S. K. Biswas, D. Moshous, C. Picard, J. P. Jais, D. D'Cruz, J. L. Casanova, C. Trouillet, F. Geissmann, Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLr7 and TLr8 receptors, Immunity 33 (2010) 375–386. |
[19] | Baeten, D.; Boots, A. M. H.; Steenbakkers, P. G. A.; Elewaut, D.; Bos, E.; Verheijden, G. F. M.; Verbruggen, G.; Miltenburg, A. M. M.; rijnders, A. W. M.; Veys, E. M.; et al. Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: Correlation with joint destruction in rheumatoid arthritis. Arthritis rheum. 2000, 43, 1233–1243. |
[20] | Azeredo EL, Neves Souza PC, Alvarenga Ar, et al. Differential regulation of toll -like receptor -2, toll -like receptor -4, CD16 and human leucocyte antigen -Dr on peripheral blood monocytes during mild and severe dengue fever [J]. Immunology, 2010, 130 (2): 202-216. |
[21] | Cella M, D€ohring C, Samaridis J et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 1997; 185: 1743–51. |
[22] | Mohty, M., Jarrossay, D., Lafage-Pochitaloff, M., Zandotti, C., Briere, F., de Lamballeri, X. N., Isnardon, D., Olive, D., Gaugler, B., “Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogentic abnormalities as well as functional impairment”, 2001, Blood, 13, 98, 3750-3756. |
[23] | Marsh, S. G. E., Parham, P., Dupont, B., Geraghty, D. E., Trowsdale J., Middleton, D, Vilches, C., Carrington, M, Witt, C., Guethlein, L. A., Shilling, H., Garcia, C. A., Hus, K. C., and Wain, H., "Killer-cell immunoglobulin-like receptor (KIr) nomenclature report, 2002", 2003, Immunogenetics, 55, 220-226. |
[24] | Cheng H, Mohammed F, Nam G et al. Crystal structure of leukocyte Ig-like receptor LILrB4 (ILT3/LIr-5/CD85k): a myeloid inhibitory receptor involved in immune tolerance. J Biol Chem 2011; 286: 18013–25. |
[25] | Do JS, Visperas A, Sanogo YO, Bechtel JJ, Dvorina N, Kim S, et al. An IL-27/ Lag3 axis enhances Foxp3+ regulatory T cell-suppressive function and therapeutic efficacy. Mucosal Immunol (2016) 9: 137–45. doi: 10.1038/mi.2015.45. |
[26] | Chaperot, L., Bendriss, N., Maches, O., Gressin, r., Maynadie, M., Trimoreau, F., Orfeure, H., COrrONT, B., Feuillard, J., Sotto, J. J., Bensa, J. C., Briere, f., Plumas, J., Jacob, M. C., “Identification of a leukemic counterpart of the plasmacytoid dendritic cells”, 2001, Blood, 10, 97, 3210-3217. |
[27] | Koch, S.; Kucharzik, T.; Heidemann, J.; Nusrat, A.; Luegering, A. Investigating the role of proinflammatory CD16+ monocytes in the pathogenesis of inflammatory bowel disease. Clin. Exp. Immunol. 2010, 161, 332–341. |
[28] | rosetti, F.; Mayadas, T. N. The many faces of Mac-1 in autoimmune disease. Immunol. rev. 2016, 269, 175–193. |
[29] | Mant TG, Borozdenkova S, Bradford DB, et al. Changes in HLA-Dr expression, cytokine production and coagulation following endotoxin infusion in healthy human volunteers [J]. Int Immunopharmacol, 2008, 8 (5): 701-707. |
[30] | Gustafson MP, Lin Y, Bleeker JS, et al. Intratumoral CD14 + cells and circulating CD14 + HLA-Drlo/neg monocytes correlate with decreased survival in patients with clear cell renal cell carcinoma [J]. Clin Cancer res, 2015, 21 (18): 4224-4233. |
[31] | Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+ CD16+ Dr++ monocytes are a major source of TNF [J]. J Immunol, 2002, 168 (7): 3536-3542. |
[32] | Szaflarska A, Baj Krzyworzeka M, Siedlar M, et al. Antitumor response of CD14 + /CD16 + monocyte subpopulation [J]. Exp Hematol, 2004, 32 (8): 748-755. |
[33] | Lugo-Villarino G, Neyrolles O. Dressed not to kill: CD16 + monocytes impair immune defence against tuberculosis. Eur J Immunol, 2013, 43 (2): 327-330. |
[34] | Ziegler-Heitbrock L. The CD14 + CD16 + blood monocytes: their role in infection and inflammation. J Leuk Biol, 2007, 81 (3): 584-592. |
[35] | WANG S, BrESKOVSKA I, GANDHY S, et al. Advances in autoimmune myasthenia gravis management [J]. Expert rev Neurother, 2018, 18 (7): 573-588. |
[36] | AMANO M, NAKAYAMA M, KAIBUCHI K. rho- kinase/rOCK: A key regulator of the cytoskeleton and cell polarity [J]. Cytoskeleton (Hoboken), 2010, 67 (9): 545-554. |
[37] | QU N, XU M, MIZOGUCHI I, et al. Pivotal roles of Thelper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases [J]. Clin Dev Immunol, 2013, 2013: 968549. |
[38] | CrOXFOrD A L, MAIr F, BECHEr B. IL-23: One cytokine in control of autoimmunity [J]. European Journal of Immunology, 2012, 42 (9): 2263-2273. |
[39] | Marwa C, Hubert V, Assia E, Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases [J] Clin Med, 2017, 6 (7): 68. |
[40] | Shahrara S, Pickens Sr. Dorfleutner A, et al. IL-17 induces monocyte migration in rheumatoid arthritis [J]. J Immunol, 2016, 182 (6): 3884-3891. |
[41] | Baeten D, Boots AM, Steenbakkers PG, et al. Human cartilage gp-39 +, CD16 + monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis rheumatol, 2000, 43 (6): 1233-1243. |
[42] | Wen JT, Zhang DH, Fang PF, et al. role of TH1 /TH2 cytokines in the diagnosis and prognostic evaluation of ankylosing spondylitis [J]. Genet Mol res, 2017, 16 (1): 16019322. |
APA Style
Miao Yu, Xiuli Tan. (2023). Dynamic Changes of CD16+ Monocytes in Ankylosing Spondylitis and Its Significance. American Journal of Applied Scientific Research, 9(3), 82-89. https://doi.org/10.11648/j.ajasr.20230903.11
ACS Style
Miao Yu; Xiuli Tan. Dynamic Changes of CD16+ Monocytes in Ankylosing Spondylitis and Its Significance. Am. J. Appl. Sci. Res. 2023, 9(3), 82-89. doi: 10.11648/j.ajasr.20230903.11
AMA Style
Miao Yu, Xiuli Tan. Dynamic Changes of CD16+ Monocytes in Ankylosing Spondylitis and Its Significance. Am J Appl Sci Res. 2023;9(3):82-89. doi: 10.11648/j.ajasr.20230903.11
@article{10.11648/j.ajasr.20230903.11, author = {Miao Yu and Xiuli Tan}, title = {Dynamic Changes of CD16+ Monocytes in Ankylosing Spondylitis and Its Significance}, journal = {American Journal of Applied Scientific Research}, volume = {9}, number = {3}, pages = {82-89}, doi = {10.11648/j.ajasr.20230903.11}, url = {https://doi.org/10.11648/j.ajasr.20230903.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajasr.20230903.11}, abstract = {Background: The pathogenesis of ankylosing spondylitis (AS) is unclear and the incidence has been increasing in recent years. Objective: To explore the trend and clinical significance of peripheral blood mononuclear cell subtypes in patients with AS. Method: Detect plasma levels of seven cytokines (TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A, and IFN-γ), analyze the correlation between the percentage of CD16+monocyte subtypes and cytokine expression at the same level. Result: Compared with the control group, the plasma levels of five cytokines in the AS group were significantly higher than those in the control group (P<0.05), and were positively correlated with the content of CD16+monocytes. Conclusion: CD16+monocytes are closely related to the occurrence of AS; Detecting CD16+monocyte subtypes in patients' peripheral blood can provide new experimental indicators for the diagnosis of AS. Taking AS as a starting point, it provides a new research direction for the treatment and prognosis detection of other autoimmune diseases in the future.}, year = {2023} }
TY - JOUR T1 - Dynamic Changes of CD16+ Monocytes in Ankylosing Spondylitis and Its Significance AU - Miao Yu AU - Xiuli Tan Y1 - 2023/07/08 PY - 2023 N1 - https://doi.org/10.11648/j.ajasr.20230903.11 DO - 10.11648/j.ajasr.20230903.11 T2 - American Journal of Applied Scientific Research JF - American Journal of Applied Scientific Research JO - American Journal of Applied Scientific Research SP - 82 EP - 89 PB - Science Publishing Group SN - 2471-9730 UR - https://doi.org/10.11648/j.ajasr.20230903.11 AB - Background: The pathogenesis of ankylosing spondylitis (AS) is unclear and the incidence has been increasing in recent years. Objective: To explore the trend and clinical significance of peripheral blood mononuclear cell subtypes in patients with AS. Method: Detect plasma levels of seven cytokines (TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A, and IFN-γ), analyze the correlation between the percentage of CD16+monocyte subtypes and cytokine expression at the same level. Result: Compared with the control group, the plasma levels of five cytokines in the AS group were significantly higher than those in the control group (P<0.05), and were positively correlated with the content of CD16+monocytes. Conclusion: CD16+monocytes are closely related to the occurrence of AS; Detecting CD16+monocyte subtypes in patients' peripheral blood can provide new experimental indicators for the diagnosis of AS. Taking AS as a starting point, it provides a new research direction for the treatment and prognosis detection of other autoimmune diseases in the future. VL - 9 IS - 3 ER -